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Abstract
Disentangling two systems can cause an increase in energy, as discussed in
Schulman and Gaveau (2006 Phys. Rev. Lett. 97 240405). We here prove
a critical inequality used in that letter. Let A and B be two systems and
suppose that the initial density matrix for the combined system is a product.
Let them have coupling V and let them evolve for a time t under the full
Hamiltonian (including V). For the now-entangled full density matrix, the
energy is unchanged. Next, disentangle, obtaining the new density matrix for
A by tracing over the B variables, and similarly for B. We show that for a large
class of V’s the expected energy obtained using the product of the disentangled
density matrices exceeds the original energy.

PACS numbers: 03.65.Yz, 05.30.−d, 03.65.Ud, 42.50.Gy

1. Introduction

In [1] we explored the effect of decoherence and entanglement on energy conservation.
Specifically, it appeared that the mere fact that two particles separated after an elastic collision
could cause an increase in their total energy. Of course further examination showed that this
was not the case; nevertheless, certain kinds of decoherence that one might have considered
harmless did in fact change a system’s energy.

In our previous study [1] we made use of an inequality with the following content: let
there be two systems, A and B, interacting with a potential V, of a particular form. Let the
system initially have a density matrix that is a product of A and B density matrices, i.e. it
is of the form ρA(0) ⊗ ρB(0) (using standard notation). Now let it evolve under the full
Hamiltonian for a time t. The time-t density matrix is not in general a product, since the
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Hamiltonian entangles the two systems. But now we take a partial trace over each subsystem.
Thus we define e.g., ρA(t) ≡ TrBρ(t), with TrB the trace over the B-variables. If we evaluate
the energy using the untraced ρ(t), it will be unchanged from its time-0 value. However, if
ρ(t) is replaced by ρA(t) ⊗ ρB(t), then the energy could change, and with the form of V used
in [1] and for short periods of time, it always increases.

In the present paper we present a detailed derivation of the inequality used in [1]. In
particular, we will indicate the conditions on V, the interaction, necessary for the result to hold.
Although the result is more general than was indicated in [1], it does not hold universally. In
particular, as mentioned in [1], while the spin-boson model does have the indicated energy
increase, the Jaynes–Cummings model does not.

The result of [1] suggests that operations that seem quite innocent, in particular the erasure
of certain correlations, can have significant effects. The Boltzmann H-theorem [2] may be
the most well-known example of this, but other discussions, such as van Kampen’s criticism
of the Green–Kubo formula, may well hinge on similar issues [3–5]. Another situation with
surprising survival of entanglement effects is studied in [6, 7].

The calculation we are about to present does not have shortcuts and involves quite a bit
of attention to detail. Its structure is similar to that of a calculation of measurement-induced
dissipation [8] related to the Lindblad equation. It would be of great interest if a simpler
demonstration could be found.

2. Coupled systems: definitions

Consider two quantum systems A and B. The Hamiltonian of A is HA and similarly for B. The
full system A+B has the Hamiltonian

H = HA + HB +
N∑

i=1

Ai ⊗ Bi. (1)

Here Ai (resp. Bi) are operators acting on A (resp. B) only. In the following, definitions are
understood to apply to both A and B, and ‘resp.’ will be omitted. In general, the index A
means an operator acting only on system A. In equation (1), HA is an abbreviation for HA ⊗ IB

where IB is the identity operator on B. Ai and Bi are assumed to be Hermitian. We also require
that the Ai’s, as well as the Bi’s, commute with one another:

[Ai,Aj ] = 0 (∀ i, j), [Bi, Bj ] = 0 (∀ i, j). (2)

(That the A’s commute with the B’s holds by virtue of their acting on different spaces.)

Remark. The commutativity and Hermiticity conditions distinguish the spin-boson model,
for which the result of this paper holds, from the Jaynes–Cummings model, for which it does
not.

Remark. These conditions are in fact used only near the end of the proof. See equations (54)
and (57). All formulas prior to those equations are true with neither commutativity or
Hermiticity.

At time t = 0, the system A+B is taken to have a density matrix ρ that is a tensor product:

ρ(0) = ρ
(0)
A ⊗ ρ

(0)
B , (3)

where ρ
(0)
A is a density matrix for A and ρ

(0)
B for B. At time t, the density matrix of A+B is

ρ(t) where
dρ(t)

dt
= −i[H, ρ] (4)

2
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with

ρ|t=0 = ρ(0). (5)

For any operator Q on A+B, we define the partial traces

QA = TrBQ and QB = TrAQ, (6)

where TrB is the trace over B’s degrees of freedom, so that TrBQ is an operator on A and is
denoted by QA. In particular, we define the ‘marginal’ density matrices at time t for A and B,
namely

ρA(t) = TrBρ(t) and ρB = TrAρ(t). (7)

The trace of each of these operators is 1. We then consider

δE(t) = Tr[(ρA(t) ⊗ ρB(t))H ] − Tr[ρ(t)H ], (8)

and we want to calculate the difference of average energy for small time t.
The quantity δE(t) is the central object of the present paper, and we will show that for

short times and for the AB interaction taken above, it is positive.

3. Evaluation of δE(t) > 0 to second order in t

3.1. A simplification

The first remark is that

δE(t) =
N∑

i=1

{TrA[ρA(t)Ai] TrB[ρB(t)Bi] − Tr[ρ(t)(Ai ⊗ Bi)]}. (9)

This follows immediately from the definitions of the partial traces and of the operators HA and
HB. Using those definitions, the traces over HA and HB cancel. There remains only the trace
over the interaction energy,

∑
Ai ⊗ Bi , which yields equation (9).

3.2. Short time evolution of ρ(t) and energy

3.2.1. First step. From equation (4), we obtain for small t

ρ(t) = ρ(0) − it[H, ρ(0)] − t2

2
[H, [H, ρ(0)]] + O(t3). (10)

The first commutator gives

[H, ρ(0)] = [
HA, ρ

(0)
A

] ⊗ ρ
(0)
B + ρ

(0)
A ⊗ [

HB, ρ
(0)
B

]
+

∑
i

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]
. (11)

Iterating, one gets

[H, [H, ρ(0)]] = [
HA,

[
HA, ρ

(0)
A

]] ⊗ ρ
(0)
B

+ ρ
(0)
A ⊗ [

HB,
[
HB, ρ

(0)
B

]]
+ 2

[
HA, ρ

(0)
A

] ⊗ [
HB, ρ

(0)
B

]
+

∑
i

([
Ai ⊗ Bi,

[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

]
+

[
Ai ⊗ Bi, ρ

(0)
A ⊗ [

HB, ρ
(0)
B

]])

+

{ ∑
i

([
HA,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]]
+

[
HB,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]])}
1

+
∑
i,j

[
Aj ⊗ Bj ,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]]
. (12)

3
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As stated earlier, HA stands for HA ⊗ IB , etc, and we have grouped together similar terms. We
have also used the identity

[UA ⊗ IB,XA ⊗ YB] = [UA,XA] ⊗ YB, (13)

(where UA, XA refer to A only, etc). Use the Jacobi identity for the terms in the expression
enclosed by the curly bracket subscripted with a ‘1’ in equation (12):[
HA,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]] = [
Ai ⊗ Bi,

[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

]
+

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]
,

(14)

so that equation (12) becomes

[H, [H, ρ(0)]] = [
HA,

[
HA, ρ

(0)
A

]] ⊗ ρ
(0)
B + ρ

(0)
A ⊗ [

HB,
[
HB, ρ

(0)
B

]]
+ 2

[
HA, ρ

(0)
A

] ⊗ [
HB, ρ

(0)
B

]
+

{
2

[ ∑
i

Ai ⊗ Bi,
[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

]

+ 2

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ [

HB, ρ
(0)
B

]]}
1

+
∑

i

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]
+

[
Ai ⊗ [HB,Bi], ρ

(0)
A ⊗ ρ

(0)
B

]

+

{[ ∑
i

Aj ⊗ Bj ,

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

]]}
2

. (15)

3.2.2. The trace of the energy of interaction, calculated from equation (10).

Tr

[( ∑
k

Ak ⊗ Bk

)
ρ(t)

]
=

∑
k

TrA
(
Akρ

(0)
A

)
TrB

(
Bkρ

(0)
B

)

− itTr

(
[H, ρ(0)]

∑
k

Ak ⊗ Bk

)
− t2

2
Tr

(
[H, [H, ρ(0)]]

∑
k

Ak ⊗ Bk

)
. (16)

For any operators V and U, one has Tr(V [V,U ]) = 0. From equation (11) and this identity,
it follows that

Tr

(( ∑
k

Ak ⊗ Bk

)
[H, ρ(0)]

)
=

∑
k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bkρ

(0)
B

)
+

∑
k

TrA
(
Akρ

(0)
A

)
TrB

(
Bk

[
HB, ρ

(0)
B

])
. (17)

In the same way, when we calculate Tr
((∑

k Ak ⊗Bk

)
[H, [H, ρ(0)]]

)
and we use equation (15)

for the double bracket, the contributions of the curly-bracketed expressions with subscripts ‘1’
and ‘2’ of equation (15) give 0:

Tr

( ∑
k

(Ak ⊗ Bk)[H, [H, ρ(0)]]

)
=

∑
k

(
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])
TrB

(
Bkρ

(0)
B

)
+ [A ↔ B]

)
+ 2

∑
k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])
+

∑
k,i

{
Tr

(
(Ak ⊗ Bk)

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

])
+ Tr

(
(Ak ⊗ Bk)

[
Ai ⊗ [HB,Bi], ρ

(0)
A ⊗ ρ

(0)
B

])}
. (18)

4
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We rearrange the last sum in equation (18),

Tr
(
(Ak ⊗ Bk)

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]) = TrA
(
Ak[HA,Ai]ρ

(0)
A

)
TrB

(
BkBiρ

(0)
B

)
− TrA

(
Akρ

(0)
A [HA,Ai]

)
TrB

(
Bkρ

(0)
B Bi

)
, (19)

and we sum by renaming the indices∑
k,i

Tr
(
(Ak ⊗ Bk)

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

])
=

∑
i,k

TrB
(
BkBiρ

(0)
B

)
TrA

(
Ak[HA,Ai]ρ

(0)
A − Aiρ

(0)
A [HA,Ak]

)
=

∑
k,i

TrB
(
BkBiρ

(0)
B

)[
TrA

(
AkHAAiρ

(0)
A − AkAiHAρ

(0)
A

−Aiρ
(0)
A HAAk + Aiρ

(0)
A AkHA

)]
=

∑
k,i

TrB
(
BkBiρ

(0)
B

)
TrA

(
(2AkHAAi − AkAiHA − HAAkAi)ρ

(0)
A

)
. (20)

The expressions in the last line of equation (20) are reminiscent of the Lindblad equation, and
in fact guided us in this calculation [8]. Using this expression, equation (18) becomes

Tr

( ∑
k

(Ak ⊗ Bk)[H, [H, ρ(0)]]

)

=
∑

k

(
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])
TrB

(
Bkρ

(0)
B

)
+ [A ↔ B]

)
+ 2

∑
k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])
+

∑
k,i

(
TrB

(
BkBiρ

(0)
B

)
TrA

(
(2AkHAAi − AkAiHA − HAAkAi)ρ

(0)
A

)
+ [A ↔ B]

)
. (21)

Note also

2AkHAAi − AkAiHA − HAAkAi = Ak[HA,Ai] + [Ak,HA]Ai. (22)

Finally, we use equations (17) and (21) to rewrite equation (16) for small t as

Tr

(( ∑
k

Ak ⊗ Bk

)
ρ(t)

)
=

∑
k

TrA
(
Akρ

(0)
A

)
TrB

(
Bkρ

(0)
B

)

− it

{∑
k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bkρ

(0)
B

)
+ [A ↔ B]

}

− t2

2

{∑
k

(
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])
TrB

(
Bkρ

(0)
B

)
+ [A ↔ B]

)
+ 2

∑
k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])

+
∑
k,i

(
TrB

(
BkBiρ

(0)
B

)
TrA

(
(Ak[HA,Ai] + [Ak,HA]Ai)ρ

(0)
A

)
+ [A ↔ B])

}
.

(23)

5
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3.3. Partial traces and product of the partial traces

3.3.1. Calculation of ρA(t). We take the trace over B of ρ(t) in equation (10)

ρA(t) = TrBρ(t) = ρ
(0)
A − itTrB[H, ρ(0)] − t2

2
TrB[H, [H, ρ(0)]] + · · · . (24)

We use equation (11), noticing that

TrB[UB, VB ] = 0, TrBρ
(0)
B = 1, (25)

and we obtain

TrB[H, ρ(0)] = [
HA, ρ

(0)
A

]
+ TrB

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

]
, (26)

and then, we use equation (15) to get

TrB[H, [H, ρ(0)]] = [
HA,

[
HA, ρ

(0)
A

]]
+ 2TrB

[ ∑
i

(Ai ⊗ Bi),
[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

]

+ 2TrB

[ ∑
i

(Ai ⊗ Bi), ρ
(0)
A ⊗ [

HB, ρ
(0)
B

]]

+ TrB

[ ∑
i

([HA,Ai] ⊗ Bi + Ai ⊗ [HB,Bi]), ρ
(0)
A ⊗ ρ

(0)
B

]

+ TrB

[ ∑
j

Aj ⊗ Bj ,

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

]]
. (27)

3.3.2. Calculation of TrA(AkρA(t)). From equation (24), equation (26) and equation (27),
using the fact that

TrA(Ak TrB X) = Tr(AkX) (28)

we obtain

TrA(AkρA(t)) = TrA
(
Akρ

(0)
A

) − it

{
TrAAk

[
HA, ρ

(0)
A

]
+ Tr

(
Ak

[∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

])}
− t2

2

{
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])

+ 2Tr

(
Ak

[ ∑
i

Ai ⊗ Bi,
[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

])

+ 2Tr

(
Ak

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ [

HB, ρ
(0)
B

]])

+ TrA

(
Ak

[∑
i

([HA,Ai] ⊗ Bi + [Ai ⊗ HB,Bi]), ρ
(0)
A ⊗ ρ

(0)
B

])

+ TrA

(
Ak

[∑
j

Aj ⊗ Bj ,

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

]])}
. (29)

We have an analogous formula for TrB(BkρB(t)) obtained by exchanging A and B in
equation (29).

6
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3.3.3. Sum of the product of traces. To calculate δE(t) we also need to calculate∑ ≡
∑

k

TrA(AkρA(t))TrB(BkρA(t)). (30)

Term of order 0 in t. This term is the product of the terms of order 0 in equation (29) and the
terms in the corresponding equation for Bk. So it is∑

0 ≡
∑

k

TrA
(
Akρ

(0)
k

)
TrB

(
Bkρ

(0)
k

)
. (31)

Terms of order 1 in t. This is the product of the term of order 0 of equation (29) and the term
of order 1 of the corresponding equation for B and the exchange term A↔B. So

∑
1

= −it

{∑
k

TrA
(
Akρ

(0)
A

)(
TrB

(
Bk

[
HA, ρ

(0)
A

])

+ Tr

(
Bk

[ ∑
i

Ai ⊗ Bi, ρ
(0)
A ⊗ ρ

(0)
B

])
+ [A ↔ B]

}
. (32)

Now, consider in equation (32) the terms∑
k,i

TrA
(
Akρ

(0)
A

)
Tr

(
Bk

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

])
=

∑
k,i

TrA
(
Akρ

(0)
A

){
Tr

(
Aiρ

(0)
A ⊗ BkBiρ

(0)
B

) − Tr
(
ρ

(0)
A Ai ⊗ Bkρ

(0)
B Bi

)}
=

∑
k,i

(
TrA

(
Akρ

(0)
A

)
TrA

(
Aiρ

(0)
A )

){
TrB

(
BkBiρ

(0)
B

) − TrB
(
BiBkρ

(0)
B

)} ≡ 0 (33)

(recall that here Bk is IA ⊗ Bk). This is zero because the first bracket is symmetric in Ak,Ai

and the curly bracket is skew symmetric in Bi, Bk . Thus,
∑

1 reduces to

∑
1 ≡ −it

{∑
TrA

(
Akρ

(0)
A

)
TrB

(
Bk

[
HA, ρ

(0)
A

])
+ [A ↔ B]

}
. (34)

Conclusion: The terms of orders 0 and 1 in t of∑
k

TrA(AkρA(t))TrB(BkρB(t)) (35)

are identical to the corresponding term of Tr
( ∑

k(Ak ⊗ Bk)ρ(t)
)

in equation (23).

Terms of order 2 with respect to t in
∑

of equation (30). These terms,
∑

2, are the product
of the terms of order 2 in t in equation (29) and the term of order 0 in the B equation, the
exchange term in A↔B, and the product of the terms of order 1 in t in equation (29) and the
term of order 1 in t in the B equation. Thus, we write

∑
2 = − t2

2

∑̂
2 (36)

7
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with
∑̂

2 given by∑̂
2

≡
∑

k

TrB
(
Bkρ

(0)
B

)[
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])

+

{
2
∑

i

(
Tr

(
Ak

[
Ai ⊗ Bi,

[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

]))
+Tr

(
Ak

[
Ai ⊗ Bi, ρ

(0)
A ⊗ [

HB, ρ
(0)
B

]])}
3

+

{∑
i

(
Tr

(
Ak

(
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

))
+ Tr

(
Ak[Ai ⊗ [HB,Bi]], ρ

(0)
A ⊗ ρ

(0)
B

))}
4

+

{
+

∑
i,j

Tr
(
Ak

[
Aj ⊗ Bj ,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]])}
5

]
+ [A ↔ B]

+ 2
∑

k

{
TrA

(
Ak

[
HA, ρ

(0)
A

])
+

∑
i

TrA
(
[Ak,Ai]ρ

(0)
A

)
TrB

(
Biρ

(0)
B

)}

×
{

TrB
(
Bk

[
HB, ρ

(0)
B

])
+

∑
i

TrA
(
Aiρ

(0)
A

)
TrB

(
[Bk, Bi]ρ

(0)
B

)}
. (37)

Here we have used the fact that in the first order terms of equation (29), one has

Tr
(
Ak

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]) = Tr
(
(Ak ⊗ IB)

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

])
= TrA

(
AkAiρ

(0)
A

)
TrB

(
Biρ

(0)
B

) − TrA
(
Akρ

(0)
A Ai

)
TrB

(
ρ

(0)
B Bi

)
= TrB

(
Biρ

(0)
B

)
TrA

(
(AkAi − AiAk)ρ

(0)
A

)
= TrB

(
Biρ

(0)
B

)
TrA

(
[Ak,Ai]ρ

(0)
A

)
. (38)

We next simplify equation (37).

(a) Terms in the first sum and curly bracket no. 3 in equation (37):

2
∑
i,k

TrB
(
Bkρ

(0)
B

)
Tr

(
Ak

[
Ai ⊗ Bi,

[
HA, ρ

(0)
A

] ⊗ ρ
(0)
B

])
= 2

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
AkAi

[
HA, ρ

(0)
A

] − Ak

[
HA, ρ

(0)
A

]
Ai

)
= 2

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

([
HA, ρ

(0)
A

]
[Ak,Ai]

) ≡ 0, (39)

because the B terms are symmetric in i, k and the A terms are skew symmetric,

2
∑
i,k

TrB
(
Bkρ

(0)
B

)
Tr

(
Ak

[
Ai ⊗ Bi, ρ

(0)
A ⊗ [

HB, ρ
(0)
B

]])
= 2

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Bi

[
HB, ρ

(0)
B

])
TrA

(
[Ak,Ai]ρ

(0)
A

)
. (40)

(b) Terms in the first sum and curly bracket no. 4 in equation (37):∑
k,i

TrB
(
Bkρ

(0)
B

)
Tr

(
Ak

[
[HA,Ai] ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

])
=

∑
k,i

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
[Ak, [HA,Ai]]ρ

(0)
A

)
×

∑
k,i

TrB
(
Bkρ

(0)
B

)
Tr

(
Ak

[
Ai ⊗ [HB,Bi], ρ

(0)
A ⊗ ρ

(0)
B

])
=

∑
k,i

TrB
(
Bkρ

(0)
B

)
TrB

(
[HB,Bi]ρ

(0)
B

)
TrA

(
[Ak,Ai]ρ

(0)
A

)
. (41)
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But Tr([X, Y ]Z) = Tr(XYZ − YXZ) = Tr(Y [Z,X]). Thus,∑
k,i

TrB
(
Bkρ

(0)
B

)
Tr

(
Aki

¯
g[Ai ⊗ [HB,Bi], ρ

(0)
A ⊗ ρ

(0)
B

])
= −

∑
k,i

TrB
(
Bkρ

(0)
B

)
TrB

(
Bi

[
HB, ρ

(0)
B

])
TrA[Ak,Ai]ρ

(0)
A . (42)

Thus, this term cancels partially the term of equation (40) (recall that there is a 2 in (40))

(c) Terms of the last sum over k of equation (37):

2
∑

k

[
TrA

(
Ak

[
HA, ρ

(0)
A

])
+

∑
k

TrA
(
[Ak,Ai]ρ

(0)
A

)
TrB

(
Biρ

(0)
B

)]

×
[

TrBBk

[
HB, ρ

(0)
B

]
+

∑
k

TrA
(
Aiρ

(0)
A

)
TrB

(
[Bk, Bi]ρ

(0)
B

)]

= 2
∑

k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])
+ 2

∑
k,i

TrB
(
Biρ

(0)
B

)
TrB

(
Bk

[
HB, ρ

(0)
B

])
TrA

(
[Ak,Ai]ρ

(0)
A

)
+ [A ↔ B]

+ 2
∑
k,i,j

TrB
(
Biρ

(0)
B

)
TrA

(
Ajρ

(0)
A

)
TrA

(
[Ak,Ai]ρ

(0)
A

)
TrB[Bk, Bj ]ρ(0)

B . (43)

In equation (43), the term

2
∑
k,i

TrB
(
Biρ

(0)
B

)
TrBBk

[
HB, ρ

(0)
B

]
TrA

(
[Ak,Ai]ρ

(0)
A

)
(44)

also combines with equation (40) and equation (42).

(d) Terms in the first sum and curly bracket no. 5 of equation (37). Indeed, by the cyclic
property of the trace∑
i,j

Tr
(
Ak

[
Aj ⊗ Bj ,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]])
=

∑
i,j

[
TrA

(
AkAjAiρ

(0)
A

)
TrB

(
BjBiρ

(0)
B

) − TrA
(
AiAkAjρ

(0)
A

)
TrB

(
BiBjρ

(0)
B

)
− TrA

(
AjAkAiρ

(0)
A

)
TrB

(
BjBiρ

(0)
B

)
+ TrA

(
AiAjAkρ

(0)
A

)
TrB

(
BiBjρ

(0)
B

)]
=

∑
i,j

[
TrA

(
[Ak,Aj ]Aiρ

(0)
A

)
TrB

(
BjBiρ

(0)
B

)
+ TrA

(
Ai[Aj ,Ak]ρ(0)

A

)
TrB

(
BiBjρ

(0)
B

)]
=

∑
i,j

(
TrA

(
[Ai, [Aj ,Ak]]ρ(0)

A

)
TrB

(
BiBjρ

(0)
B

)
+ TrA

(
[Aj,Ak]Aiρ

(0)
A

)
TrB

(
Bi, Bjρ

(0)
B

))
. (45)

Now the last sum in equation (45) contains TrB
(
[Bi, Bj ]ρ(0)

B

)
, which is skew symmetric in

i, j . So in this last sum, one can replace [Aj,Ak]Ai by 1
2 [[Aj,Ak], Ai] without changing the

sum. Then, we deduce∑
i,j

Tr
(
Ak

[
Aj ⊗ Bj ,

[
Ai ⊗ Bi, ρ

(0)
A ⊗ ρ

(0)
B

]])

=
∑
i,j

TrA
(
[Ai, [Aj ,Ak]]ρ(0)

A

)
TrB

(
(BiBj + BjBi)

2
ρ

(0)
B

)
. (46)

9
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Finally, one can collect all the terms of
∑̂

2 of equation (37). We use equations (39), (40),
(41), (42), (43) and (46) to obtain∑̂

2
=

{∑
k

TrB
(
Bkρ

(0)
B

)
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])
+

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Bi

[
HB, ρ

(0)
B

])
TrA

(
[Ai,Ak]ρ(0)

A

)
+

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
[Ak, [HA,Ai]]ρ

(0)
A

)

+
∑
i,j,k

TrB
(
Bkρ

(0)
B

)
TrB

(
(BiBj + BjBi)

2
ρ

(0)
B

)
TrA

(
[Ai, [Aj ,Ak]]ρ(0)

A

)}

+ [A ↔ B] + 2
∑

k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])
+ 2

∑
k,i,j

TrB
(
Biρ

(0)
B

)
TrA

(
Ajρ

(0)
A

)
TrA

(
[Ak,Ai]ρ

(0)
A

)
TrB

(
[Bk, Bj ]ρ(0)

B

)
. (47)

3.4. Calculation of δE(t)

δE(t) is given by equation (9):

δE(t) =
N∑

i=1

{TrA(ρA(t)Ai)TrB(ρB(t)Bi) − Tr(ρ(t)(Ai ⊗ Bi))}. (48)

In this equation, the first sum is the
∑

of equation (30) and the second sum is given by
equation (23). We have seen in equation (35) that the zeroth and first order terms in t cancel
in the difference, equation (46). As a consequence, the difference δE(t) is the difference of
terms in t2 from equations (23) and (47) (multiplied by − t2

2 ). We see immediately that in these
equations there are cancellations of∑

k

TrB
(
Bkρ

(0)
B

)
TrA

(
Ak

[
HA,

[
HA, ρ

(0)
A

]])
+ [A ↔ B] (49)

and of

2
∑

k

TrA
(
Ak

[
HA, ρ

(0)
A

])
TrB

(
Bk

[
HB, ρ

(0)
B

])
. (50)

So δE(t) is, after rearrangements,

δE(t) = − t2

2

{ ∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
[Ak, [HA,Ai]]ρ

(0)
A

)
−

∑
i,k

TrB
(
BkBiρ

(0)
B

)
TrA

(
(Ak[HA,Ai] + [Ak,HA]Ai)ρ

(0)
A

)
+

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Bi

[
HB, ρ

(0)
B

])
TrA

(
[Ai,Ak]ρ(0)

A

)

+
∑
k,i,j

TrB
(
Bkρ

(0)
B

)
TrB

(
(BiBj + BjBi)

2
ρ

(0)
B

)
TrA

(
[Ai, [Aj ,Ak]]ρ(0)

A

)

+
∑
k,i,j

TrB
(
Biρ

(0)
B

)
TrA

(
Ajρ

(0)
A

)
TrA

(
[Ak,Ai]ρ

(0)
A

)
TrB

(
[Bk, Bj ]ρ(0)

B

)}

+ [A ↔ B]. (51)
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(Note that the last line in equation (46) can be rewritten with a 1 instead of a 2 and [A ↔ B].)
Let us now rearrange the first summation in equation (51). This summation is a summation of

TrA
{
(AkHAAi − AkAiHA − HAAiAk + AiHAAk)ρ

(0)
A

}
(52)

with the coefficient TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
, which is symmetric in i, k. So it can be written

as∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
(2AkHAAi − AkAiHA − HAAkAi)ρ

(0)
A

)
=

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
TrA

(
(Ak[HA,Ai] + [Ak,HA]Ai)ρ

(0)
A

)
. (53)

Thus, equation (51) can be rewritten as

δE(t) = − t2

2

{ ∑
i,k

(
TrB

(
Bkρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
− TrB

(
BkBiρ

(0)
B

))
TrA

(
(Ak[HA,Ai] + [Ak,HA]Ai)ρ

(0)
A

)
+

∑
i,k

TrB
(
Bkρ

(0)
B

)
TrB

(
Bi

[
HB, ρ

(0)
B

])
TrA

(
[Ai,Ak]ρ(0)

A

)

+
∑
i,j,k

TrB
(
Bkρ

(0)
B

)
TrB

(
(BiBj + BjBi)

2
ρ

(0)
B

)
TrA

(
[Ai, [Aj ,Ak]]ρ(0)

A

)

+
∑
i,j,k

Tr
(
Bkρ

(0)
B

)
Tr

(
Ajρ

(0)
A

)
TrA

(
[Ai,Ak]ρ(0)

A

)
TrA

(
[Bi, Bj ]ρ(0)

B

)}

+ [A ↔ B]. (54)

Recall now our assumption, equation (2), on the operators Ai and Bi:

[Ai,Aj ] = 0 (∀ i, j) and [Bi, Bj ] = 0 (∀ i, j). (55)

Then equation (54) can be simplified as follows:

δE(t) = − t2

2

∑
i,j

(
TrB

(
Bjρ

(0)
B

)
TrB

(
Biρ

(0)
B

) − TrB
(
BjBiρ

(0)
B

))
TrA

(
(Aj [HA,Ai]

+ [Aj ,HA]Ai)ρ
(0)
A

)
+ [A ↔ B] + O(t3). (56)

Moreover, using the fact that the Bi’s are Hermitian operators, one can define a symmetric
matrix Mij by

Mij ≡ TrB
(
BiBjρ

(0)
B

) − TrB
(
Bjρ

(0)
B

)
TrB

(
Biρ

(0)
B

)
. (57)

Then (Mij ) is symmetric and positive.

Proof. Indeed, it is symmetric because BiBj = BjBi . Let ξi be real numbers. Then∑
ξiξjMij = TrB

(
(ξ.B)2ρ

(0)
B

) − (
TrB(ξ.B)ρ

(0)
B

)2
(58)

with ξ ·B = ∑
ξiBi . But if C is a Hermitian operator, with eigenvalues cα , in a basis in which

C is diagonal

Tr(C2ρ) − (TrCρ)2 =
∑

ρααc2
α −

( ∑
ρααcα

)2

. (59)
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But ραα > 0 and
∑

α ραα = 1, so that by Jensen’s inequality for the convex functions x2, one
has ( ∑

ρααcα

)2

�
∑

ρααc2
α (60)

(with equality if and only if cα = λραα).

4. Interaction of particles: sum of separable potentials

Suppose the system A is formed of quantum particles with coordinates x = (x1, . . . , xn) and
the system B is formed of particles with coordinates y = (y1, . . . , yp). Take

HA = p2
A

2
+ VA(x), pA,j = 1

i

∂

∂xj

HB = p2
B

2
+ VB(y), pB,j = 1

i

∂

∂yj

(61)

where pA (resp. pB) are the conjugate momenta of x (resp. y).
Suppose now that the Aj = Aj(x) and Bj = Bj(y) are functions of x and y, respectively,

and assume that they are real functions. So the Aj , Bj are commuting Hermitian operators
and equation (56) for δE(t) can be used.

We evaluate each term in equation (56). Clearly,

[HA,Ai] = − 1
2 [�A,Ai] = − 1

2 (�AAi) − (
−→∇ Ai).

−→∇ . (62)

Here, �A = ∑n
j=1

∂2

∂x2
j

and (
−→∇ Ai)

−→∇ = ∑n
j=1

(
∂

∂xj
Ai

)
∂

∂xj
. Thus,

Ak[HA,Ai] + [Ak,HA]Ai = − 1
2Ak(�AAi) − Ak(

−→∇ Ai).
−→∇ + 1

2 (�AAk)Ai + (
−→∇ Ak)

−→∇ Ai

= 1
2 ((�AAk)Ai − Ak(�AAi)) + (Ai(

−→∇ Ak)
−→∇

− Ak(
−→∇ Ai).

−→∇ ) + (
−→∇ Ak.

−→∇ Ai). (63)

Now the first two terms following the second equal sign in equation (63) are skew symmetric
in k, i. But in δE(t) they are summed over k, i with coefficients that are symmetric in k, i, so
they disappear in the summation. Then, the summation reduces to∑
i,j

(
TrB

(
Biρ

(0)
B

)
TrB

(
Bjρ

(0)
B

) − TrB
(
BiBjρ

(0)
B

))
TrA

(
(
−→∇ Ai.

−→∇ Aj)ρ
(0)
A

)
. (64)

In equation (64), the traces can be easily written as space integrals over the x or y variables.
We get

δE(t) = t2

2

∑
i,j

[ ∫
Bi(y)Bj (y)ρ

(0)
B (y, y) dy

−
( ∫

Bi(y)ρ
(0)
B (y, y) dy

)(∫
Bj(y)ρ

(0)
B (y, y) dy

)]

×
[ ∫

(
−→∇ Ai(x).

−→∇ Aj(x))ρ
(0)
A (x, x) dx

]
+ [A ↔ B] + O(t3). (65)

In equation (65), the summation of the second member is of the type∑
i,j

MijNji (66)

12
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with

Mij =
∫

Bi(y)Bj (y)ρ
(0)
B (y, y) dy −

(∫
Bi(y)ρ

(0)
B (y, y) dy

) (∫
Bj(y)ρ

(0)
B (y, y) dy

)

Nij =
∫

(
−→∇ Ai(x)

−→∇ Aj(x))ρ
(0)
A (x, x) dx.

(67)

Mij and Nij are symmetric matrices. We have seen above that (Mij ) is positive. Now, (Nij )
is also positive because

∑
ξiξjNij = ∫ ‖−→∇ (ξ.A)‖2ρ

(0)
A (y, y) dy > 0.

So the summation of equation (66) is also positive because it is Tr(MN) which can be
evaluated in a basis for which N is diagonal with eigenvalues νi , and thus it is

∑
Miiνi . But

here νi � 0, because N is positive and Mii > 0 because M is also positive.
This completes the proof that δE(t) � 0.

5. Interaction of particles: two-body potentials

Until now we have considered separable potentials. We now show how this includes more
common kinds of coupling.

One has two systems, A and B, of degrees of freedom x and y, respectively:

HA = p2
A

2
+ VA(x), pA conjugate to the x

HB = p2
B

2
+ VB(y), pB conjugate to the y

(68)

and the interaction between x and y is∑
α

Wα(x(α) − y(α)), (69)

where x(α) is a subset of the x and y(α) is a subset of the y with same indices.
Functions of a difference of coordinates, as in equation (69), can be approximated by

sums of separable potentials. Restricting to the case of a single even potential, W , one writes

W(x − y) =
∫

cos (p(x − y)) W(p)
dp

(2π)n

=
∫

[cos(px) cos(py) + sin(px) sin(py)]
dp

(2π)n
(70)

and one has

W(x − y) = lim
∑

μ

(A′
μB ′

μ + A′′
μB ′′

μ), (71)

with

A′
μ = cos(pμx), B ′

μ = cos(pμy)W(pμ)
�pμ

(2π)n
,

A′′
μ = sin(pμx), B ′′

μ = sin(pμy)W(pμ)
�pμ

(2π)n
.

(72)

In this expression the pμ are discretized values of p, and the limit in equation (71) refers to
decreasing the mesh in this discretization. Note that the Aμ and Bμ are real functions, hence
Hermitian operators.

The foregoing demonstration considered a single even potential W . For odd potentials,
one replaces the trigonometric identity for the cosine by that for the sine. Furthermore, any

13
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potential can be written as a sum of even and odd potentials. Finally, there is no difficulty
extending this result to a sum of potentials, as in equation (69).

It follows that the results of our previous sections apply, and we deduce that for any
potential interaction of the form (69), δ(t) > 0 for small time.
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